
Indicador microprocessado universal tipo RLM

RESUMO DA PROGRAMAÇÃO

12

INTRODUÇÃO

Em prosseguimento ao desenvolvimento de aparelhos microprocessados a Digimec lança no mercado o indicador universal tipo RLM. Projetado para trabalhar com uma gama variável de sinais de entrada permitem ao usuário a programação da escala desejada de acordo com a relação utilizada. Totalmente configurável por seu teclado frontal permite a execução de diversas funções relativas ao processo. Montado em caixa plástica para embutir em painéis conforme norma DIN e fixação por grampos.

PRINCIPAIS CARACTERÍSTICAS

- Entrada universal configurável: termopares, termoresistências, tensão, corrente.
- Fonte para alimentação de sensores ou transmissores.
- Função memória, memória alta, memória baixa, relativa, reset de máxima, mínima, liga, desliga relés de alarmes, tara, raiz quadrada, linearização.
- Display com 5 algarismos podendo indicar unidades de engenharia.
- Retransmissão isolada do PV.
- 4 saídas à relé configuráveis.
- Entrada digital / tecla de função configuráveis.
- Comunicação serial MODBUS RTU RS-485.
- Alimentação por fonte chaveada 22-60 Vcc / 20-48 Vca ou 90-240 Vca / 50-60 Hz.

DADOS TÉCNICOS

Alimentação	22 - 60 Vcc / 20 - 48 Vca ou 90 - 240 Vca (esp	pecificar)			
Freqüência da rede	50 - 60 Hz				
Consumo	3 VA				
Temperatura ambiente	De trabalho: 0 a +55°C (35 - 85 % UR)				
Entradas	Termopares: J, K, T, E, R, S, B, N (conf. EIT-90)				
	Termoresistências: Pt-100 (conf. EIT-90)				
	Corrente: 0 - 20 / 4 - 20 mA				
	Tensão: 0 - 5 / 0 - 10 Vcc				
Erro máximo	0,25% da faixa máxima + 1℃ para termopar	J, K, T, N.			
	0,25% da faixa máxima + 3℃ para termopar E, R, S, B.				
	0,2% da faixa máxima + 1℃ p/ termoresistêr	ncia e corrente/tensão linear.			
Erro de compensação de junta fria	1℃				
Impedância de entrada	Termopares / Termoresistências e mV:	>10 M			
	Tensão 0 - 5 / 0 - 10 Vcc :	1 M5			
	Corrente: 0 - 20 / 4 - 20 mA:	10 W			
Corrente de excitação para Pt-100	180 μΑ				
Tempo de estabilização	20 min				
Resolução interna	21000 níveis. Display 12000 níveis				
Saídas	4 relés (SPST) NA - 5A / 250 Vca. (carga resist	tiva)			
Saída de retransmissão	4 - 20 mA				
Resolução retransmissão	> 2400 níveis, carga máxima 50 W				
Fonte para alimentação de transmissores	24 Vcc				
Comunicação serial	RS-485 / MODBUS (RTU)				
Grau de proteção	IP-54 (frontal)				
Temperatura amb. de operação	0 a +55° C (35 - 85% UR)				

Ao ligar o aparelho, o mesmo mostrará brevemente a versão do software e o grupo de carga (ver pág.7) e em seguida entrará neste modo, onde será mostrado o valor de processo (PV).

MODO DE OPERAÇÃO

Display em modo operação :

O PV pode ser mostrado de 2 maneiras, ver parámetro unidade (uni da. no menu conf.):

- -5 dígitos (ou 4D e sinal negativo) : selecionar unida = espaço (blank).
- -4 dígitos (ou 3D e sinal negativo, muda automaticamente para 5 dígitos se necessário) + letra/sinal indicador(a) : selecionar unida. conforme segue:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	R	Ь	٢	C	d	Ε	F	ប	Н	h	1		۵	L	П	\Box	0	٥	P	r	5	Ł	Ш	u
25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
5	n	1	11	-	_	(dir)	(esq)	٢]	ň	-	=	0	espaço										

Cada letra ou simbolo poderá ter ou não um ponto acima a esquerda (utilizar a tecla F para ligar ou desligá-lo) ex.: graus celsius $^{\circ}$ C selecionar .C (para sensores com ti Po < 20, é o valor default) e graus Fahrenheit $^{\circ}$ F selecionar unida =.F

Teclado em modo operação:

A tecla F permite ativar / desativar funções especiais: memo, memo máxima, memo mínima, desliga alarmes, etc: ver parâmetro f unc (menu conf).

A tecla permite visualizar o valor mínimo atingido pelo PV desde que o aparelho foi ligado.

A tecla permite visualizar o valor máximo atingido pelo PV desde que o aparelho foi ligado.

MODO DE PROGRAMAÇÃO

Neste modo, podem ser ajustados os diversos parámetros do aparelho, por meio de 4 menus, dentro dos quais cada parâmetro poderá ser acessado apertando sucessivamente na tecla , e ajustado com as teclas . Quando se trata de algo que pode ser ajustado, o display pisca, quando se trata de um nome do menu, o display não pisca. No fim do menu, volta-se ao parâmetro inicial do mesmo menu, e para sair : tecla inicio. O parâmetro é gravado tanto com a tecla como com a tecla inicio.

1. Menu SEt P.

Neste menu, acessado apertando brevemente a tecla 🔤, pode-se ajustar os set points dos alarmes. Só aparecerão os parâmetros necessários conforme ajustado nos parametros tipo de alarme.

Ex.: se t AL.1 = 0 (desliga alarme 1), não aparecerão os parámetros ALA.1 e d.ALA.1. Se t AL.1=1 não aparecerá d.ALA.1, se todos t AL forem = zero, não haverá nenhum parâmetro neste menu.

1	ALA.1	= setpoint do alarme 1 (ver Z em 1.2)	Default = 50
2	ALA.2	= setpoint do alarme 2	Default = 60
3	ALA.3	= setpoint do alarme 3	Default = 70

082	Sai .02	Ponto de saida 02 da linearização personalizada	1.4.1
083	Sai .03	Ponto de saida 03 da linearização personalizada	1.4.1
084	Sai .04	Ponto de saida 04 da linearização personalizada	1.4.1
085	Sai .05	Ponto de saida 05 da linearização personalizada	1.4.1
086	Sai .06	Ponto de saida 06 da linearização personalizada	1.4.1
087	Sai .07	Ponto de saida 07 da linearização personalizada	1.4.1
088	Sai .08	Ponto de saida 08 da linearização personalizada	1.4.1
089	Sai .09	Ponto de saida 09 da linearização personalizada	1.4.1
090	Sai .10	Ponto de saida 10 da linearização personalizada	1.4.1
091	Sai .11	Ponto de saida 11 da linearização personalizada	1.4.1
092	Sai .12	Ponto de saida 12 da linearização personalizada	1.4.1
093	Sai .13	Ponto de saida 13 da linearização personalizada	1.4.1
094	Sai .14	Ponto de saida 14 da linearização personalizada	1.4.1
095	Sai .15	Ponto de saida 15 da linearização personalizada	1.4.1
096	Sai .16	Ponto de saida 16 da linearização personalizada	1.4.1
097	Sai .17	Ponto de saida 17 da linearização personalizada	1.4.1
098	Sai .18	Ponto de saida 18 da linearização personalizada	1.4.1
099	Sai .19	Ponto de saida 19 da linearização personalizada	1.4.1
100	Sai .20	Ponto de saida 20 da linearização personalizada	1.4.1

2.3 Instrução 05 : FORCE SINGLE COIL

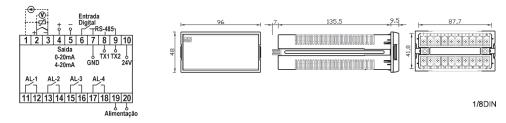
É possivel Ligar ou desligar as 4 saídas (relé) de alarme, desde que o parametro tAL correspondente tenha o valor zero. O endereço será 0 a 3 para as saidas 1 a 4. Ex: ligar relé 2 : [xx][05][00][01][FF][00][crc][crc]

2.4 Instrução 06: PRESET SINGLE REGISTER

Os registros podem ter seu valor alterado, exceto os indicados como escrita "Não" . O efeito será o mesmo como se tivesse sido alterado o parámetro pelo teclado. Caso o valor solicitado seja fora de faixa para o parâmetro correspondente, o aparelho responderá com o código de erro 03.

2.5 Resposta de erros

O aparelho suporta os seguintes códigos de erros :


01h ILLEGAL FUNCTION (funcao invalida: só as funções 03,05 e 06 são suportadas)

02h ILLEGAL DATA ADRESS (endereco de registrador invalido: somente endereços de 0 a 100)

03h ILLEGAL DATA VALUE (valor em registrador(es) inválido para o parametro)

Caso o aparelho receba um comando com crc errado, ele não responderá.

DIAGRAMA DE LIGAÇÃO DIMENSÕES

026	t AL.2	Tipo do alarme 2	1.2
027	t AL.3	Tipo do alarme 3	1.2
028	t AL.4	Tipo do alarme 4	1.2
029	d.ALA.1	Set point diferencial do Alarme 1	1.1
030	d.ALA.2	Set point diferencial do Alarme 2	1.1
031	d.ALA.3	Set point diferencial do Alarme 3	1.1
032	d.ALA.4	Set point diferencial do Alarme 4	1.1
033	h.ALA.1	Histerese do Alarme 1	1.2
034	h.ALA.2	Histerese do Alarme 2	1.2
035	h.ALA.3	Histerese do Alarme 3	1.2
036	h.ALA.4	Histerese do Alarme 4	1.2
037	Ti Po	Tipo de entrada	1.3.1
038	uni da	Unidade no D5 do display (valor de 0 a 39 cf. lista em 2.1, somar 100 p/ ligar o ponto)	1.1
039	Li mb	Limite baixo	1.3
040	Li mA	Limite Alto	1.3
041	Ender	Endereço do aparelho na comunicação serial Não	2.1
042	Baud	Baud rate do aparelho na comunicação serial Não	2.1
046	t.t1.A1	Tempo t1 do alarme 1	1.2
047	t.t2.A1	Tempo t2 do alarme 1	1.2
048	t.t1.A2	Tempo t1 do alarme 2	1.2
049	t.t2.A2	Tempo t2 do alarme 2	1.2
050	t.t1.A3	Tempo t1 do alarme 3	1.2
051	t.t2.A3	Tempo t2 do alarme 3	1.2
052	t.t1.A4	Tempo t1 do alarme 4	1.2
053	t.t2.A4	Tempo t2 do alarme 4	1.2
061	Ent.01	Ponto de entrada 01 da linearização personalizada	1.4.1
062	Ent .02	Ponto de entrada 02 da linearização personalizada	1.4.1
063	Ent.03	Ponto de entrada 03 da linearização personalizada	1.4.1
064	Ent .04	Ponto de entrada 04 da linearização personalizada	1.4.1
065	Ent .05	Ponto de entrada 05 da linearização personalizada	1.4.1
066	Ent .06	Ponto de entrada 06 da linearização personalizada	1.4.1
067	Ent .07	Ponto de entrada 07 da linearização personalizada	1.4.1
068	Ent .08	Ponto de entrada 08 da linearização personalizada	1.4.1
069	Ent .09	Ponto de entrada 09 da linearização personalizada	1.4.1
070	Ent.10	Ponto de entrada 10 da linearização personalizada	1.4.1
071	Ent.11	Ponto de entrada 11 da linearização personalizada	1.4.1
072	Ent.12	Ponto de entrada 12 da linearização personalizada	1.4.1
073	Ent.13	Ponto de entrada 13 da linearização personalizada	1.4.1
074	Ent.14	Ponto de entrada 14 da linearização personalizada	1.4.1
075	Ent.15	Ponto de entrada 15 da linearização personalizada	1.4.1
076	Ent.16	Ponto de entrada 16 da linearização personalizada	1.4.1
077	Ent.17	Ponto de entrada 17 da linearização personalizada	1.4.1
078	Ent.18	Ponto de entrada 18 da linearização personalizada	1.4.1
079	Ent.19	Ponto de entrada 19 da linearização personalizada	1.4.1
080	Ent.20	Ponto de entrada 20 da linearização personalizada	1.4.1
081	Sai .01	Ponto de saida 01 da linearização personalizada	1.4.1

4	ALA.4	= setpoint do alarme 4	Default = 80
5	d.ALA.1	= setpoint diferencial do alarme 1 (ver Z em 1.2)	Default = -
6	d.ALA.2	= setpoint diferencial do alarme 2	Default = -
7	d.ALA.3	= setpoint diferencial do alarme 3	Default = -
8	d.ALA.4	= setpoint diferencial do alarme 4	Default = -

Obs: com o parâmetro SEL. do menu ConF. (menu 1.3) poderá ser ajustado o nivel a partir do qual será necessário digitar uma senha para acesso dos parametros subsequentes ex.: SEL=4, será necessário digitar a senha para acesso aos parâmetros dALA2, ALA3 etc. Se for zero, a senha sempre será necessária, se for 9, nunca. Para os menus 1.2, 1.3, 1.4, a senha é sempre necessária a partir do primeiro parâmetro. A senha é constituída de 5 apertos de teclas. Essa sequencia de teclas poderá ser gravada no menu 1.3. Existe uma senha permanente, e uma senha especial para o menu de calibragem.

Os menus 1.2, 1.3, 1.4 podem ser alcançados apertando na tecla 🔤 mais de 3 segundos : aparecerá no display :

SEt P.	(=menu 1.1)
ALAr M	(=menu 1.2)
ConF.	(=menu 1.3)
CALi b	(=menu 1.4)

As teclas **III** permitem selecionar um desses 4 menus, e a tecla **III** entra no menu selecionado. Para os menus 1.2,1.3,1.4 a senha será sempre necessária.

1.2. Menu ALAr M

Neste menu, após digitar a senha 🗖 🗖 🗖 🗖 , pode-se ajustar os parâmetros relativos à configuração dos alarmes :

t.AL.1	tipo o alarme 1 (ver tabela XYZ abaixo)	Default = 1
t.AL.2	tipo o alarme 2	Default = 1
h.AL.1	histerese do alarme 1	Default = 1.0
h.AL.2	histerese do alarme 2	Default = 1.0
t.t1.A1	tempo t1 do alarme 1 (até 7199 seg.=2H)	Default = *
t.t2.A1	tempo t2 do alarme 1 (até 7199 seg.=2H)	Default = *
t.t1.A2	tempo t1 do alarme 2	Default = *
t.t2.A2	tempo t2 do alarme 2	Default = *
etc alar	me 3 e 4	* Dependerá da tabela X, Y, Z
- /		

Só aparecerão os parametros necessários cf. parâmetro t.AL: por exemplo se t.AL1=0, não aparecerá nenhum outro parâmetro do AL.1.

O tipo de alarme é determinado pelo código de 3 digitos (centenas X, dezenas Y, unidade Z), conforme segue : resumo t.AL. = XYZ :

X	Υ	Z
0 sem temporização	0 normal	0 Desligado
1 atraso	1 com inibe	1 Absoluto alto
2 pulso	2 com latch	2 Absoluto baixo
3 pulsos	3 com inibe e latch	3 Relativo (diferencial) alto
t1 t2 t1		4 Relativo (diferencial) baixo
		5 Fora da faixa
		6 Dentro da faixa
		7 Sensor aberto

Detalhamento:

Ζ

- =0: o alarme está sempre desligado (relé desenergizado).
- =1: o alarme liga (relé energizado) se o valor PV (valor do display) estiver igual ou acima do valor ajustado em ALA, e desliga após o valor voltar a ALA-h.AL (histerese) ou abaixo.
- =2: o alarme liga se o valor PV estiver igual ou abaixo do valor ajustado emALA, e desliga após o valor voltar a ALA+h.AL ou acima.
- =3: o alarme liga se o valor PV estiver igual ou acima do valor ajustado em ALA + d.ALA., e desliga após o valor voltar a ALA+d.ALA h.AL ou abaixo.
- =4: o alarme liga se o valor PV estiver igual ou abaixo do valor ajustado em ALA d.ALA., e desliga após o valor voltar a ALA-d.ALA + h.AL ou acima.
- $=\!5\!: o \ alarme \ liga \ se \ o \ valor \ PV \ estiver \ igual \ ou \ acima \ do \ valor \ ajustado \ em \ ALA + \ d. ALA., \ ou \ igual \ ou \ abaixo \ do \ valor \ ALA$
- d.ALA., e desliga após o valor voltar a ALA+d.ALA h.AL (histerese) ou a ALA-d.ALA +h.ALA.
- =6: o alarme liga se o valor PV estiver igual ou abaixo do valor ajustado em ALA + d.ALA., e igual ou acima do valor ALA
- d.ALA., e desliga após o valor voltar a ALA+d.ALA h.AL (histerese) ou a ALA-d.ALA +h.ALA.
- =7: o alarme liga se o aparelho detectar o sinal correspondente a entrada com sensor aberto, ou sinal muito maior que o máximo para o tipo da entrada.

Υ

Função inibe: a eventual situação de alarme antes do PV ter sido atingido pela primeira vez após ligar o aparelho é inibida. Ex.: alarme absoluto baixo com inibe: após ligar o aparelho o alarme só acionará se o PV ficar abaixo do ALA após o PV tê-lo atingido.

Função latch: se o alarme for acionado, ele permanecerá acionado mesmo se o PV voltar a condição normal. Só será resetado se desligar o aparelho.

Χ

Alarmes temporizados:

A condição de alarme descrita em YZ acionará a(s) temporização(ções) cf. mostrado nos diagramas da coluna X acima. Ex. pulso (X=2): caso existe a condição de alarme o relé permanece energizado durante t1segundos. Os relés de alarme podem ser desligados pela tecla F / entrada digital (ver função 7, 1.3.2).

1.3. Menu ConF.

Neste menu, após digitar a senha ..., pode-se ajustar os parâmetros de configuração do aparelho. Os parâmetros deste menu são :

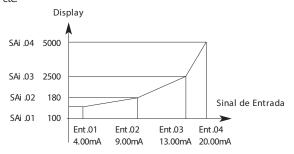
	and a desire metric such	Default
Ti po	Tipo de entrada (ver 1.3.1)	0
SHi Ft	Valor acrescentado ao valor medido.	00
Li mb	Limite baixo do PV e dos set points. Abaixo desse valor o display mostrará uuuuu	-50
Li mA	Limite alto do PV e dos set points. Acima desse valor o display mostrará nnnnn	750
Func.	Função especial (ver 1.3.2)	23
Pos.P.d	Posição do ponto decimal (ver 1.3.3)	-
uni dA	Letra / sinal mostrado no display (vermodo de operação)	°C
RAIZ	Função quadrática (ver 1.3.4)	
CarGA	Carrega um conjunto de valores pre-programados. (ver 1.3.5)	0
Baud	Velocidade de comunicação serial (2400,4800,9600,19200) ver 2.1	9600

As instruções suportadas pelo indicador são:

03	Read holding registers (registros 40001 a 40101 correspondem aos endereços 0 a 100)	
05	Force single coil (relés 1 a 4 correspondem aos endereços 0 a 3)	
06	Preset single holding register (exceto os indicados "Escrita: Não)	

2.2.Instrução 03: READ HOLDING REGISTERS

Obs: até máx. 20 registros de vez, com endereço máximo de 100 (=40101).


Exemplo: [xx][03][00][5E][00][07][crc][crc] = pedir 7 registros de 0094 a 0100.

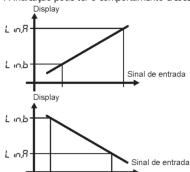
Exemplo.		[[5L][00][07][alc][alc] = peal 7 registros de 0094 a 0100.		
Endereço	Parâmetro	Descrição	Escrita	Ver §
000	PV	Variável de processo, valor mostrado no display	Não	
001	MAX	PVmáx Leitura: Valor mínimo da Variável de Processo	Não 1	1.3.2-2.2
002	MIN	PVmin Leitura: Valor mínimo da Variável de Processo	Não 1	1.3.2-2.2
003	memo	Variavel de processo memorizada	Não	1.3.2
004	RELAT	Valor no display após funcão relativo.	Não	1.3.2
005	MEDIA	Valor no display após funcão media.	Não	1.3.2
006	status	bit 0 : condição de alarme 1	Não	
		bit 1 : condição de alarme 2		
		bit 2 : condição de alarme 3		
		bit 3 : condição de alarme 4		
		bit 4 : estado do relé de alarme 1		
		bit 5 : estado do relé de alarme 2		
		bit 6 : estado do relé de alarme 3		
		bit 7 : estado do relé de alarme 4		
		bit 8 : entrada digital		
007	versão	XXYY XX grupo de carga. YY versão do software	Não	1.3.5
010		Comando igual ao parámetro Func (=para leitura)		1.3.2
		Para escrita :		
		1 MEmo		
		2 MEmo.A		
		3 MEmo.b		
		4 Relat		
		5 Media		
		6 Limpa máximo e mínimo		
		7 Alarme off		
		8 Zera tara		
011	Pos.P.d	Posição ponto decimal		1.3.3
012	Func	Funções especiais da entrada digital e tecla F		1.3.2
013	r AIS	PV antes do tratamento pela função RAIS. O valor do PV no endereço 0000 é		
		depois do tratamento.	Não	1.3.4
015	Shi f t	Offset da entrada		1.3
017	r AIS	Função rais quadrada		1.3.4
021	ALA.1	Set point do Alarme 1		1.1
022	ALA.2	Set point do Alarme 2		1.1
023	ALA.3	Set point do Alarme 3		1.1
024	ALA.4	Set point do Alarme 4		1.1
	· • • •			11.1

1.4.1. Linearização personalizada

Caso seja definido uma entrada de ti po = 25 a 29, a linearização da entrada será definida pelo usuário. O sinal de entrada deve ser dividido em máximo 19 segmentos. O primeiro segmento começa com o valor de entrada Ent.01 igual Li mb, e o último (não necessariamento o 19°) termina com o valor Ent.19 igual a Li m_a .

Para cada segmento se define quais valores devem ser apresentados no display por meio dos parâmetros Sai .01 etc.

Exemplo: 3 segmentos, entrada 4-20mA


ti po =27

Li mb definido em 100

Li mA definido em 5000

1.4.2. Modo linear crescente ou decrescente

A indicação pode ter o comportamento crescente ou decrescente em relação ao sinal de entrada.

Linear crescente: Quando valor programado no parâmetro limite baixo do PV (Lin.b) é menor que o limite alto do PV (Lin.A).

Linear decrescente: Quando valor programado no parâmetro limite baixo do PV (Lin.b) é maior que o limite alto do PV (Lin.A).

1.4.3. Retransmissão do PV

O aparelho retransmite sempre o valor do display sob forma de um sinal analógico de 0-20mA ou 4-20mA, isolado do circuito de entrada de sensor. Haverá pelo menos 2400 niveis para 4-20mA, e 3000 niveis para 0-20mA. Os parámetros de calibragem C.out .b C.out .A permitem ajustar os extremos (=zero e span).

COMUNICAÇÃO SERIAL

2.1. Dados gerais

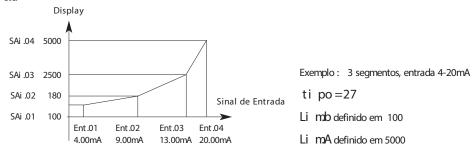
O indicador RLM possui um interface de comunicação serial tipo mestre-escravo, padrão RS-485 isolado da alimentação do processador e sensor, com protocolo MODBUS RTU (maiores informações sobre o protocolo no site www.modbus.org). A velocidade de comunicação pode ser selecionada no aparelho entre 2400,4800,9600 e 19200 ba ud no parâmetro bAud do menu ConF. Os dados são de 8 bits, sem paridade, 1 stop bit. O endereço do indicador ("device id.") pode ser ajustado de 1 a 247 no parâmetro EndEr. Um led no frontal indica quando o aparelho está transmitindo ou recebendo dados.

EndEr	Endereço do aparelho para comunicação serial. Ver 2.1	1
ni u.S	= nivel de senha (ver número do parámetro em 1.1)	9
	= estando no valor do parámetro ni V.S e apertando por mais de 5 seg. poderá ser	Red Red Red Red
	gravada uma nova senha, constituída de 5 apertos de teclas.	

1.3.1. Tipo de entrada e limites máximos

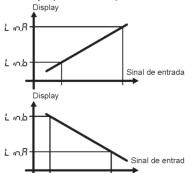
Ajustar o valor do parâmetro ti Po conforme segue :

00	J	-50 a 750°C (-58 a 1382°F)
01	K	-50 a 1300°C (-58 a 2372°F)
02	Pt100	-200 a 600°C (-148 a 1112°F)
03	Pt100	-200.0 a 600.0°C (-148.0 a 1112.0°F)
04	Т	-200 a 400°C (-328 a 752°F)
05	E	-100 a 1000°C (-148 a 1328°F)
06	R	0 a 1750°C (32 a 3182°F)
07	S	0 a 1750°C (32 a 3182°F)
08	В	300 a 1800°C (572 a 3272°F)
09	N	-50 a 1300℃ (-58 a 2372°F)
10*	4-20mA	Linearização J.: -50 a 750℃
11*	4-20mA	Linearização K.:-50 a 1300℃
12*	4-20mA	Linearização Pt100.:-200 a 600°C
13*	4-20mA	Linearização Pt100.:-200.0 a 600.0℃
14*	4-20mA	Linearização T.: -200 a 400 ℃
15*	4-20mA	Linearização E.: -100 a 1000℃
16*	4-20mA	Linearização R.: 0 a 1750℃
17*	4-20mA	Linearização S.: 0 a 1750°C
18*	4-20mA	Linearização B.: 300 a 1800℃
19*	4-20mA	Linearização N. : -50 a 1300℃
20	-10a70mV	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
21*	0-20mA	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
22*	4-20mA	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
23*	0-5V	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
24*	0-10V	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
25	-10a70mV	Linearização definida pelo usuário.
26*	0-20mA	Linearização definida pelo usuário.
27*	4-20mA	Linearização definida pelo usuário.
28*	0-5V	Linearização definida pelo usuário.
29*	0-10V	Linearização definida pelo usuário.


1.3.1.1. Obs *: Jump situado na lateral do aparelho (vide janela e etiqueta na caixa)

- Deve ser colocado na posição 3 para as entradas 0-5V ou 0-10V (tipo23,24,28,29)
- Deve ser posicionado na posição 1 caso se deseje uma fonte de alimentação +5V para sensores 0-20mA ou 4-20mA no borne 2.
- Em todos os outros casos, o jump permanece na posição 2 default.

1.4.1. Linearização personalizada


Caso seja definido uma entrada de \dot{t} i po = 25 a 29, a linearização da entrada será definida pelo usuário. O sinal de entrada deve ser dividido em máximo 19 segmentos. O primeiro segmento começa com o valor de entrada Ent.01 igual Li mb, e o último (não necessariamento o 19°) termina com o valor Ent.19 igual a Li m_a .

Para cada segmento se define quais valores devem ser apresentados no display por meio dos parâmetros Sai .01 etc.

1.4.2. Modo linear crescente ou decrescente

A indicação pode ter o comportamento crescente ou decrescente em relação ao sinal de entrada.

Linear crescente: Quando valor programado no parâmetro limite baixo do PV (Lin.b) é menor que o limite alto do PV (Lin.A).

Linear decrescente: Quando valor programado no parâmetro limite baixo do PV (Lin.b) é maior que o limite alto do PV (Lin.A).

1.4.3. Retransmissão do PV

O aparelho retransmite sempre o valor do display sob forma de um sinal analógico de 0-20mA ou 4-20mA, isolado do circuito de entrada de sensor. Haverá pelo menos 2400 niveis para 4-20mA, e 3000 niveis para 0-20mA. Os parámetros de calibraçem C.out .b C.out .A permitem ajustar os extremos (=zero e span).

COMUNICAÇÃO SERIAL

2.1. Dados gerais

O indicador RLM possui um interface de comunicação serial tipo mestre-escravo, padrão RS-485 isolado da alimentação do processador e sensor, com protocolo MODBUS RTU (maiores informações sobre o protocolo no site www.modbus.org). A velocidade de comunicação pode ser selecionada no aparelho entre 2400,4800,9600 e 19200 ba ud no parâmetro bAud do menu ConF. Os dados são de 8 bits, sem paridade, 1 stop bit. O endereço do indicador ("device id.") pode ser ajustado de 1 a 247 no parâmetro EndEr. Um led no frontal indica quando o aparelho está transmitindo ou recebendo dados.

EndEr	Endereço do aparelho para comunicação serial. Ver 2.1	1
ni u.S	= nivel de senha (ver número do parámetro em 1.1)	9
	= estando no valor do parámetro $ni\ V.S$ e apertando por mais de 5 seg. poderá ser	
	gravada uma nova senha, constituída de 5 apertos de teclas.	

1.3.1. Tipo de entrada e limites máximos

Ajustar o valor do parâmetro ti Po conforme seque :

00	J	-50 a 750℃ (-58 a 1382°F)
01	K	-50 a 1300°C (-58 a 2372°F)
02	Pt100	-200 a 600°C (-148 a 1112°F)
03	Pt100	-200.0 a 600.0℃ (-148.0 a 1112.0℉)
04	T	-200 a 400°C (-328 a 752°F)
05	E	-100 a 1000°C (-148 a 1328°F)
06	R	0 a 1750°C (32 a 3182°F)
07	S	0 a 1750°C (32 a 3182°F)
08	В	300 a 1800℃ (572 a 3272°F)
09	N	-50 a 1300°C (-58 a 2372°F)
10*	4-20mA	Linearização J.: -50 a 750°C
11*	4-20mA	Linearização K.: -50 a 1300℃
12*	4-20mA	Linearização Pt100.:-200 a 600°C
13*	4-20mA	Linearização Pt100.:-200.0 a 600.0℃
14*	4-20mA	Linearização T.: -200 a 400 ℃
15*	4-20mA	Linearização E.: -100 a 1000℃
16*	4-20mA	Linearização R.: 0 a 1750°C
17*	4-20mA	Linearização S.: 0 a 1750℃
18*	4-20mA	Linearização B.: 300 a 1800℃
19*	4-20mA	Linearização N.: -50 a 1300℃
20	-10a70mV	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
21*	0-20mA	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
22*	4-20mA	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
23*	0-5V	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
24*	0-10V	Linear. Indicação programavel de -1999 a 9999 ou 20000 se unida = espaço (5digitos)
25	-10a70mV	Linearização definida pelo usuário.
26*	0-20mA	Linearização definida pelo usuário.
27*	4-20mA	Linearização definida pelo usuário.
28*	0-5V	Linearização definida pelo usuário.
29*	0-10V	Linearização definida pelo usuário.

1.3.1.1. Obs *: Jump situado na lateral do aparelho (vide janela e etiqueta na caixa)

- Deve ser colocado na posição 3 para as entradas 0-5V ou 0-10V (tipo23,24,28,29)
- Deve ser posicionado na posição 1 caso se deseje uma fonte de alimentação +5V para sensores 0-20mA ou 4-20mA no borne 2.
- Em todos os outros casos, o jump permanece na posição 2 default.